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Abstract

There is a large gap between academic vision research and
industrial machine vision applications. A cross-fertilization
between academic and industrial researchers is of mutual
benefit: it leads to practical applications of benefit to indus-
try, as well as offering real-world challenges that deepen
research understanding. A cross-disciplinary atmosphere
between academia and industry should be encouraged by
appropriate funding sources in government, academia, and
industry. Three real-life projects in the author’s experience
at General Motors demonstrate the potential pay-offs of
such an approach. An understanding of human hyperacuity
mechanisms (i.e., vernier acuity, or the ability to judge
distances between lines at higher accuracy than the resolu-
tion limit of the human photoreceptors) led to a subpixel
method for finding circuit board locations to extremely high
accuracy using a low-cost machine vision system (Young,
SPIE Proc., v. 728, 1986). Research 011 the neural basis of
primate color vision led to a proposed new type of color
display, based on opponent mechanisms, that should be
cheaper than conventional RGB displays (Young, SPIE, v.
1250, 1990). Also, a study of primate motion vision led to
a proposed new low-cost motion sensor (Young &
Lesperance, SPIE Proc., v. 1913, 1993). The vision ma-
chines on the plant floor, and the sensor and display devices
needed for vehicles of the 21st century, will greatly benefit
from closer interaction between academic and industrial
researchers.
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1. Introduction

Both academically-oriented and industrially-oriented col-
leagues must share their ideas and experiences for the U.S.
to achieve globally competitive advantages in its core
manufacturing industries. I propose a future seminar with
attendees encouraged to provide examples from their own
experience of bridging the gap between academic research
and industrial applications. Ways to improve the transition
from academic research to industrial applications should
also be discussed. The pursuit of the application of knowl-
edge is something which gives benefit to all companies, to
academic research which must ultimately test its ideas for
scientific advancement, and to society in general. A free-
wheeling discussion of how to better bridge the gap should

be encouraged as part of the program of this proposed
seminar, with the results of the discussion to be summarized
in an appropriate medium for wide-spread distribution.

I will describe several real-life cases where the aca-
demic study of human vision either led to or could lead to
practical industrial applications in machine vision and elec-
tronic imaging technology. Using models and knowledge
from the academic study of human vision, my colleagues
and I at General Motors developed a number of industrial
applications with advantages over previous engineering
approaches to electronic imaging and computer vision
technology. I will first briefly review the basics of early
biological vision. Then I will describe three projects:

• Supersight: An advance in fast, highly accurate com-
puter vision. The study of human hyperacuity mecha-
nisms led to a subpixel method for finding printed
circuit board locations to high accuracy.

• Opponent-color display: Basic research on primate
color vision led to a proposed new low-cost opponent-
color liquid crystal display for automobile dashboards.

• A speed sensor: A basic research study of primate
motion vision led to a proposed new low-cost speed
and direction sensor.

2. Oh Say Can You See?
The Physiology of Vision

One way of developing advanced machine vision sys-
tems—suitable for applications ranging from assembly
robot control to “smart cars” in intelligent vehicle highway
systems—is to imitate the computational mechanisms of
human vision.

A simple, concise model of the fundamental mecha-
nisms of vision as observed in the primate eye and brain is
described in this paper. Biological vision provides a basis
for efficient, robust machine vision systems for form, mo-
tion, color, and potentially for stereo and all other types of
machine vision as well.

How can we see? One answer lies in the receptive fields
of visual cells in our eyes and brain—the regions where
light “turns on” a nerve signal.

Millions of such fields analyze and filter the patterns of
light that fall on the retina. The output of these fields
provides the basis upon which conscious visual perception
is eventually constructed by higher brain processes. That is,
perception itself is derived from the information as filtered
and analyzed by such fields (Figure 1).
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Figure 2. Response of visual simple cell (Stage 5 in schematic on
Figure 1 ) to a small spot of light differs depending on the precise
location on the retina where the fight falls. This graph is a receive
field map for a particular cell. (The horizontal axis is the left-right
direction on a video screen in front of the animal at which a small
spot of light about 1/2 sec of visual angle is turned on. The vertical
axis is the up-down direction on the screen.) The intensity of the
cell’s response to the small spot of light is measured at different
locations. Dark squares represent areas that actually decrease
the cell’s response below the resting level of activity; lightest
squares represent the most intense positive response. From this
map, we know that this cell will respond strongly to a light-dark
border or “edge” placed at about an 80° orientation. The contour
plot represents the best fit of the Gaussian first derivative function
created by the model described in this paper. This filter provides
a near-optimum first-stage edge analysis for a vision system.

Young1 illustrates the major anatomical structures and
physiological processes underlying visual receptive fields.
Theoretical models of those field shapes were also tested
and investigated.

The Gaussian derivative model provided the simplest
and most concise description of the receptive fields of the
models tested (for example, see Figure 7). Gaussian deriva-
tive machine vision spatiotemporal filters, based upon the
biological data, produced robust estimates of the spatial and
temporal derivatives of the image. Such filters are suitable for
many types of vision analysis, using only linear, separable
Gaussian derivative filters or their linear combinations.

So a partial answer to “How can we see?” may be that
receptive fields in the early visual system serve as robust
derivative analyzers in space and time. Using such analyzers in
an artificial vision system may help robots (or cars) to “see.”

3. Supersight: An Advance In Fast, Accurate
Computer Vision

3.1 Biological Vision and the Nyquist Resolution Limit
The human vision system has limited resolution capa-

bility since there are individual receptors in the eye rather
than a continuous “sheet” of photoreceptive material. The
“cones” are the receptor cells in the retina which we use for
the initial stage of daylight vision. They receive the light
entering the eye and translate it into electrical signals for
transmission to later stages of vision in the eye and brain. In
Figure 3 you can see a picture of cones in the central region
of the eye. The spacing between the cones is seen to be less
than 10 microns, the length of the marker at the top of the
figure. This inter-cone distance translates in the human eye
into an inter-cone spacing of about 30 seconds of arc. There
are thus about 120 cones per degree of visual angle in the
central region of the human eye.

Here is an over-simplified explanation of the visual
resolution limit. If we shine a light source so as to put
alternate white and black bars across each column of cones,

Figure 1. The primary visual pathway consists of retinal (left) and cortical (right) stages of processing. Light falls on cones (1), and nerve
impulses are transmitted through bipolar and ganglion cells to the Lateral Geniculate Nucleus or LGN (4). The simple and complex cells
(5 and 6) filter the information for “higher order” processing. At the final level of processing, perception arises by an unknown process
that may be based upon all the neural activity in the brain acting together as a whole. The Gaussian derivative model so far has the same
functional properties as “early vision” from stages (1) through (5).
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you would expect to distinguish the bars as separate if one
column had white bars, the next column had black bars, the
next column had white bars, and so forth (Figure 3B). The
visual system need only compare whether one column of
cones next to another column of cones had a different
activation level to say whether the bar grating was present
or not.

Any spacing of the bars closer than these alternating
columns would lead to an inability to discriminate the white
and black bars. To understand this better, consider what
would happen at the extreme where both the white bars and
black bars were entirely within one column of cones (Figure
3C). The bars would not be discriminable from each other,
since the white and black bars fell entirely within one cone
and their effects would cancel. No cone would be activated
more than its neighbor. Only by simulating separate cones
differently can something be discriminated as distinct from
something else. Therefore, the minimum spacing at the
resolution limit would approximate alternating columns of
cones as in Figure 3B.

Each cone is about 30 seconds of visual angle. One
white column plus one black column would therefore total
30 seconds plus 30 seconds of angle, or a total of 1 minute
of visual angle. That means that we could put about 60
black/white pairs of lines in 1 degree of visual angle, and
still cover alternating columns of cones. This simple analy-
sis gives a reasonable approximation to the resolution limit
of the human eye, which is a grating of about 60 cycles per
degree, when tested psychophysically.

That means that if we viewed a “picket fence” at a
sufficient distance so that the spacing between the pickets
was less than 1 minute of arc, we would not be able to
distinguish the individual bars. We would see the fence as
a uniform gray area. In general, this resolution limit is
known as the Nyquist resolution limit.

The same Nyquist resolution limit applies to a ma-
chine-vision system, since video cameras likewise have
individual “receptors”—the individual solid-state photode-
tectors used to receive the light.

Although we cannot determine resolutions greater than
the Nyquist limit, can we determine the location of objects
to an accuracy greater than the Nyquist limit? This issue is
that of subpixel accuracy. The basic question is: is it
possible?

It is necessary to understand that there is a fundamental
distinction between “resolution” and “accuracy.” Resolu-
tion refers to the discrimination of multiple stimuli in the
field of view. Accuracy refers to the ability to determine the
absolute or relative locations of the stimuli.

At first consideration, accuracies smaller than the size
of the detectors does seem impossible. Consider an ex-
tremely small spot whose image is so well-focused that it
falls entirely within the boundaries of a single detector
element. The detector element would then give the same
response regardless of the spot location, making any such
subpixel accuracy technique impossible.

However, if the spot of light extends across more than
one detector element (which is typically the case because of
lens diffraction, which spreads the light out), then informa-
tion across multiple detector elements can be combined,
and higher accuracies than the Nyquist resolution limit
should theoretically be obtainable, even for small spots. In
theory, there is no upper bound on the accuracy that can be
achieved, with the only limiting factor being noise.

So subpixel resolution is impossible for a stationary
camera or eye; subpixel accuracy may be possible. The
question is: for a single spot or line, or for a pair of spots or
lines, can the relative accuracy be determined at a value
finer than the Nyquist limit?

In a machine vision system, for lines or edges or any
other extended object, multiple pixels will always be acti-
vated, and hence subpixel accuracies should theoretically
be achievable by the techniques to be described. These
techniques require some a priori knowledge of the sought
object, but this is always the case for industrial applications
where the desired goal is to locate an object or a feature of
an object.

The biological visual system likely uses such tech-
niques to achieve its capability of about one-tenth of a
receptor element for tasks requiring the relative alignment
of two dots or two lines. This human capability is familiar
in the task of aligning two lines in vernier instrument dials.
Such “vernier acuity”, or “hyperacuity” as it is often called
in the biological vision literature, has been studied for many
years.3,4 The question is: “Can we make use of this biologi-
cal knowledge to build a machine vision system with sub-
pixel capability?”

3.2 Machine Vision Subpixel Capability
Ask any manufacturing specialist the attributes a com-

puter vision system needs in order to win friends and
influence engineers, and he’d probably say: “It better be
fast, accurate, cheap, and easy to use.” Engineers familiar
with computer vision systems know that is asking for a lot.
Usually, high accuracy equates with unacceptably slow
image processing times and relatively costly hardware.

At GM, however, we have developed a machine per-
ception system that only needs a low-resolution video

Figure 3. A. End-on view of human cones in central fovea.2 B. A grating at the resolution limit of the human eye. C. A grating beyond
the resolution limit of the eye.
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camera to locate industrial parts with high accuracy. In fact,
this new vision method (called SUPERSIGHT) can locate
important image features with accuracies higher than that
implied by the pixel resolution of the camera. Image-
processing algorithms substitute for conventional high-
resolution cameras and extensive electronics.

The image processing is fast, too. Employing a camera
with a low resolution of only 100 by 100 picture elements
(pixels), SUPERSIGHT can, for example, locate circles in
a test pattern to a one-tenth-of-a-pixel or better accuracy.
With conventional techniques, achieving this accuracy re-
quires a 1000 by 1000 pixel camera, requiring the process-
ing of a million pixels. Since the SUPERSIGHT method
processes 100 times fewer pixels, it’s virtually 100 times
faster, and the camera is much lower cost than higher-
resolution cameras.

At the time of its development in the early 1980’s, the
sub-pixel accuracy we obtained with low-resolution cam-
eras represented a new level of speed and performance
capability for the computer vision industry. Today, subpixel
methods are routine in many commercially available ma-
chine vision systems.

3.3 General Approach
The key elements of the SUPERSIGHT approach are

new digital image filters for noise rejection, and statistical
methods that combine information across pixels to locate
predefined image features.

The digital filters—called directional Gaussian deriva-
tive filters—are applied in two steps. The initial Gaussian
filter acts as a low-pass filter screening out high-frequency
noise generated internally by the camera. This filter blurs or
smoothes the image slightly. Next, the computer applies a
derivative filter that sharpens up the edges and, with a
coarse accuracy, locates the edges in the previously blurred
image. The result: a simpler, less noisy, but still accurate
representation of the information in the image.

In the next step, clustering algorithms are engaged that
separate the edge pixels that lie on the object sought from
those that do not. The way these algorithms work varies
depending on whether the object sought is a straight line or
a circle. Once the pixels are clustered, special regression
routines (developed by Wes Meyer of the GM R & D
Mathematics Department) fit the clustered circle or line
pixels to subpixel accuracy levels—this is the “true” edge.

SUPERSIGHT resembles typical machine vision pro-
grams in that it analyzes images in terms of a stored model.
However, rather than an image model, SUPERSIGHT stores
a mathematical model which is the key that enables the
method to, in effect, transcend the implied pixel resolution
of the camera and achieve subpixel accuracy. The current
version of SUPERSIGHT is set up to locate lines or circles
with the aid of the clustering algorithms that segment edge
pixels and the regression routine that fits the segmented
pixels to a model. Working in the same GM R & D Center
laboratory, Ronald M. Lesperance has generalized these
clustering methods so they can recognize any arbitrary
shape. The associated regression routines which would
work on any arbitrary shape have yet to be developed.

The SUPERSIGHT algorithm is illustrated in Fig. 4
(next page).

3.4 Applications
This type of computer vision—very fast and highly

accurate at a relatively low cost—is ideal for dimensional
measurement of parts as well as part location tasks.

To this end, GM has packaged the software for use in
the “DelcoVision II” machine vision system developed by
our subsidiary Delco Electronics in Kokomo, Indiana. Delco
Electronics has put SUPERSIGHT software on-line to
locate circuit boards to a 0.001 inch accuracy in an auto-
mated manufacturing operation. To date, several million
printed circuit boards for car radios have been made with the
help of SUPERSIGHT. We have also used the SUPER-
SIGHT methods for a flexible manufacturing approach to
assembling alternator housings.

4. Opponent-Color Display:
A Low-Cost Color Display

Reconfigurable color displays are an attractive option for
instrument panels, radio, and heat/ventilation/air-condition-
ing displays, and for new displays such as navigation and night
vision. Designers have thus far been stymied in attempts to
bring these color displays into production vehicles, largely
because of the high cost of traditional three-channel “RGB”
(red-green-blue) technology. An opponent-color display
will reduce these costs by using only two channels of color
information, yet still preserving a wide range of perceived
colors.

“How much color detail do we really need in a dis-
play?” I asked. The human brain processes 90% of the color
information in the neurons of the brain in two channels only:
a broad-band channel, interpreted by the brain as black-and-
white, and an opponent channel, interpreted by the brain as
blue-and-red5 (see Figure 5). The weighted combination of
these two channels gives rise to a wide variety of perceived
colors, containing 90% of the color information that we can
see in the natural world.

I worked with GM R&D physicists and electrical
engineers to develop a two-channel reconfigurable display
that uses liquid crystals and color dichroic polarizing film
technology to control levels of black-white and red-blue at
each pixel. A simulation of the display produces a quite
believable color image.5,7

4.1 Two-Channel Color—Methods and Results
Land-type. We first tried red and white color channels

expanding upon the well-known two-channel photographic
approach proposed many years ago by Edwin Land.8 We
simulated a Land-type matrix addressable display with 256
by 256 pixels on a standard color cathode ray tube. The
resultant image produces a wide range of perceived col-
ors—not just red and white, but also greens, browns, etc.

Opponent-type. But why white and red channels? One
brightness and one color opponent channel would better
describe the major two chromatic components in the visual
system.6 (An opponent channel is one which switches
between complementary colors such as red and cyan).
Would a liquid crystal display using an opponent method
cause even more colors to be seen than with the Land
method? Yes—consider Figure 6.

The brightness signal is displayed in the even diagonal
pixels (blank squares in Figure 6) as white/black. It looks
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Figure 4. Using SUPERSIGHT to locate the center of a part to sub-pixel accuracy.
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like a black/white photo if seen by itself. The color oppo-
nent signal is displayed in the odd diagonal pixels (labeled
“R/B” for “Red/Blue” in Figure 6). This channel is the red
and blue opponent signal at each location. If red is more
intense than blue in the image, the pixel becomes more red.
If blue is more intense than red, the pixel becomes more
blue. This color opposition can be produced by a dichroic
polarizer placed on the liquid crystal cell. A test of the two
methods using color photographs of the displays shows that
about 75% of observers see a wider range of colors in the
opponent-type than in the Land-type display.

Figure 6. Opponent-color filter. The first channel is displayed in the
even diagonal pixels (blank squares). It is formed by taking the white/
black (brightness) portion of the original image, and displaying it as
white/black. The second channel is displayed in the odd diagonal
pixels (squares labeled “R/B” for “Red/Blue”). This channel is
formed by subtracting the red and blue portions of the original
image (see text). The squares are small enough so the observer’s eye
visually merges the white/black and red/blue channels. When pre-
sented in combination, a wide variety or colors are seen.

4.2 Potential Opponent-Color Display Advantages
The new opponent-color imaging technology if used

for automobile direct-view displays (instrument panels)
might offer several advantages over RGB displays:

• Costs less and brighter than RGB liquid-crystal displays;
• Good color representation (90% of RGB gamut expected);
• Easier to package than CRTs (thin, flat, low weight);
• Safe (low voltage, no vacuum compared to CRTs);
• Faster driver reaction than to vacuum fluorescent or

other monochrome-type displays;
• Better spatial resolution than vacuum fluorescent

displays.

4.3 Two-Channel Opponent Color—Conclusions and
Recommendations

Two-channel opponent-color displays offer cost or
resolution advantages over conventional three-channel color
displays, yet may still retain a wide range of perceived
color. A prototype liquid-crystal two-channel display should
be developed to test this prediction.

Car instrument panels that are reconfigurable offer a
competitive advantage over conventional fixed segment
panels. Advances in technology will make it more cost
effective to produce a common hardware display and then
customize it with software, than to manufacture specific
instrument panels for every car model. Liquid crystal dis-
plays are preferable to cathode ray tubes in cars because of
their smaller space. Color enhances quickness of informa-
tion discrimination by the driver. But ordinary color liquid
crystal displays require three channels and are expensive. A
proposed new opponent-color technique should create a
wide range of colors in liquid crystal displays with only two
color channels.

Figure 5. The two major color channels in the primate brain.6
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5. A Proposed New Motion Sensor

5.1 Physiological Basis of Motion
The ability to see movement is common among all

visual animals. Next to the simple detection of light or dark,
the detection of motion may be the oldest and most basic of
visual capabilities. In humans, motion is involved in a
number of critical functions: detecting moving objects,
segmenting scenes, extracting visual depth from moving
objects, navigating in an environment, avoiding collisions,
determining self-motion, and tracking moving objects via
eye and head movements.

Figure 7. Space-time plot (space is the horizontal axis, time is the
vertical axis) of a moving edge and a Gaussian first derivative-
like receptive field, optimized to analyze the edge’s motion. Note
that we have the same shape of field as in Figure 2, only now the
field is oriented in space-time rather than just oriented in space,
as previously.

How do we see motion? To answer this question, we
must first understand the physiological properties of simple
cell visual receptive fields in the brain, the first place at
which sensitivity to the direction of motion arises in the

visual pathway of the primate. We therefore studied the
spatiotemporal shape of “receptive fields” of simple cells in
the monkey visual cortex. Receptive fields are maps of the
regions in space and time that affect a cell’s electrical
responses. Fields with no change in shape over time re-
sponded to all directions of motion; fields with changing
shape over time (see Figure 7) responded to only some
directions of motion.

We tested a new model9 that describes not only the
static spatial properties of these cells, but their motion
properties as well. This model is an extension of the GD
model for static spatial vision.2 We compared the new GD
motion model with other models of receptive fields in visual
cortex. We found that a GD model fit these fields well, in a
transformed variable space that aligned the centers and
principal axes of the field and model in space-time (Figure
7). The model accounts for fields that vary in orientation,
location, spatial scale, motion properties, and number of
lobes. The model requires only ten parameters (the mini-
mum possible) to describe fields in two dimensions of space
and one of time. Figure 8 shows a canonical view of such
fields. A difference-of-offset-Gaussians (DOOG) provides
a plausible physiological means to form GD model fields.1

5.2 Machine Implementation
Can a machine analyze motion the same way we do?

Because of its simplicity, the GD model improves the
efficiency of machine vision systems for analyzing motion.
We implemented a simplified version of the GD motion
model in a working machine vision system. The system
produced robust local estimates of the direction and speed
of moving objects in real scenes. By so doing, we not only
discovered a more efficient computational algorithm for
motion, but also furthered our understanding of the possible
functional significance of biological motion fields.

5.3 Sensor Implementation
With this research based on the biology, we now have

a highly efficient computational method to measure the
speed and direction of moving edges.

It would be useful to extend this method to determine
the speed and direction of moving textures, and then imple-
ment the method in a simple, inexpensive visual sensor if
possible. Such a sensor might be used, for example, to

Figure 8. 3-Dimensional view of canonical Gaussian Derivative fields in space and  time. This one set of canonical fields, when rotated
in space and time, provides a good fit to all simple cell receptive field types, both directionally-selective and non-directionally-selective,
of blob, edge, and bar types, that have so far been observed in primate visual cortex.9
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measure the motion of the road under vehicles. If the true
ground speed and direction of the vehicle could then be
determined, it would permit improved braking and steering
control, and hence vehicle safety.

Some general development objectives for a generic
“ideal” speed sensor for use in the transportation industry
are that it must be capable of:

• Operating over a wide variety of surfaces, including
ice, snow, and gravel;

• Maintaining an accuracy within required margins over
a wide range of speeds;

• Operating under the range of intensities of light arising
from surfaces, including night use, given that an illumi-
nating light can be used; and

• Providing the signal output at a bandwidth and delay
time suitable for real-time control of the vehicle.

A “true ground speed sensor” that is reliable, accurate,
and low-cost has been a “holy grail” for vehicle engineers for
a long time. Technologies to date are too expensive (e.g. radar
or inertial guidance units), too prone to error, or to bulky to
be useful for commercial vehicles. There is therefore a need
for further research and development in this area.

Since motion is so basic, there are many other impor-
tant national priorities that would benefit from such an
improved motion sensor. These include applications in:

• Intelligent vehicles—collision warning, traffic speed
monitoring, and crankshaft speed sensing for misfire
detection;

• Manufacturing—monitoring of material handling and
robot motion control;

• Security—monitoring direction and speed of possible
intruders;

• Fluid dynamics—measuring particle motion to verify
fluid flow;

• Medical diagnostics—measuring speed of blood flow.

6. Summary and Conclusions

Industrial vision engineers generally seek out practical
solutions to their immediate plant needs, with little or no
knowledge of the academic vision research, either of a
biological or engineering variety. Likewise, academic re-
searchers spend lifetimes in pursuit of furthering an under-

standing of the biological mechanisms of vision, or of
exploring toy vision problems in university laboratories, or
even just in simulations in computers, without a clue as to
the potential practical benefits of their research, or without
the benefit of the increased research understanding that
would come from testing their theories and models in real-
world situations.

A cross-fertilization between academic and industrial
researchers would therefore be of great benefit: it could lead
to practical applications of benefit to industry, as well as
offering real-world challenges that stimulate and encourage
a broader and deeper research understanding. The vision
machines on the plant floor, and the sensor and display
devices needed for vehicles of the 21st century, will greatly
benefit from closer interaction between academic and in-
dustrial researchers. Appropriate funding from industry,
universities, and government should be made available to
researchers to encourage such interaction.
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